

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

1

9618 Syllabus Content:
1.1 Data Representation
Candidates should be able to:

 Show understanding of binary magnitudes and the difference between binary prefixes and
decimal prefixes

 Show understanding of the basis of different number systems

 Show understanding of the basis of different number systems

 Describe practical applications where Binary Coded Decimal (BCD) and Hexadecimal are
used

 Show understanding of and be able to represent character data in its internal binary form,
depending on the character set used

 Understand the difference between and use:
o kibi and kilo
o mebi and mega
o gibi and giga
o tebi and tera

 Use the binary, denary, hexadecimal number bases and Binary Coded Decimal (BCD) and
one’s and two’s complement representation for binary numbers

 Convert an integer value from one number base / representation to another

 Using positive and negative binary integers Show understanding of how overflow can occur

 Familiar with ASCII (American Standard Code for Information Interchange), extended ASCII
and Unicode. Students will not be expected to memorise any particular character codes.

 Denary Number System:
We know decimal or denary number system has (base 10).This uses digits 0 to 9 and has place values below

Binary number system:
The binary system on computers uses combinations of 0s and 1s and has (base 2).

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/3#glossary-zpnqn39

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

2

Binary place values
You can also break a binary number down into place-value columns, but each column is

a power of two instead of a power of ten.

For example, take a binary number like 1001. The columns are arranged in multiples of 2

with the binary number written below:

By looking at the place values, we can calculate the equivalent denary number.

That is: (1 x 2
3
) + (0 x 2

2
) + (0 x2

1
) + (1x2

0
) = 8+0+0+1

(1 x 8) + (0 x 4) + (0 x 2) + (1 x 1) = 8 + 1 = 9

 Converting binary to denary

To calculate a large binary number like 10101000 we need more place values of

multiples of 2.

 2
7
 = 128

 2
6
 = 64

 2
5
 = 32

 2
4
 = 16

 2
3
 = 8

 2
2
 = 4

 2
1
 = 2

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/4#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-zpnqn39

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

3

 2
0
 = 1

In denary the sum is calculated as:

(1x2
7
) + (0 x 2

6
) + (1 x 2

5
) + (0 x 2

4
) + (1 x 2

3
) + (0 x 2

2
) + (0 x2

1
) + (0x2

0
) = 168

(1 x 128) + (0 x 64) + (1 x 32) + (0 x 16) + (1 x 8) + (0 x 4) + (0 x 2) + (0 x 1) = 128 + 32

+ 8 = 168

The table below shows denary numbers down the left with their equivalent binary

numbers marked out below the base 2 columns. Each individual column in the table

represents a different place value equivalent to the base 2 powers

Convert between denary

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-znfmyrd

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

4

Converting denary to binary: Method 1

There are two methods for converting a denary (base 10) number to binary (base 2).

This is method one.

Divide by two and use the remainder

Divide the starting number by 2. If it divides evenly, the binary digit is 0. If it does not -

if there is a remainder - the binary digit is 1.

Play

A method of converting a denary number to binary

Download Transcript

Worked example: Denary number 83
 83 ÷ 2 = 41 remainder 1

 41 ÷ 2 = 20 remainder 1

 20 ÷ 2 = 10 remainder 0

 10 ÷ 2 = 5 remainder 0

 5 ÷ 2 = 2 remainder 1

 2 ÷ 2 = 1 remainder 0

 1 ÷ 2 = 0 remainder 1

Put the remainders in reverse order to get the final number: 1010011.

64 32 16 8 4 2 1

1 0 1 0 0 1 1

To check that this is right, convert the binary back to denary:

(1 x 64) + (0 x 32) + (1 x 16) + (0 x 8) + (0 x 4) + (1 x 2) + (1 x 1) = 83

Worked example: Denary number 122
1. 122 ÷ 2 = 61 remainder 0

2. 61 ÷ 2 = 30 remainder 1

3. 30 ÷ 2 = 15 remainder 0

4. 15 ÷ 2 = 7 remainder 1

5. 7 ÷ 2 = 3 remainder 1

6. 3 ÷ 2 = 1 remainder 1

7. 1 ÷ 2 = 0 remainder 1

Put the remainders in reverse order to get the final number: 1111010.

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/6#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/6#glossary-zpnqn39
http://a.files.bbci.co.uk/bam/live/content/z3gthyc/transcript

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

5

128 64 32 16 8 4 2 1

0 1 1 1 1 0 1 0

To check that this is right, convert the binary back to denary:

(1 x 64) + (1 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (0 x 1) = 122

The binary representation of an even number always ends in 0 and an odd number in 1.

Converting denary to binary: Method 2

There are two methods for converting a denary (base 10) number to binary (base 2).

This is method two.

Take off the biggest 2n value you can

Remove the 2
n
 numbers from the main number and mark up the equivalent 2

n
 column

with a 1. Work through the remainders until you reach zero. When you reach zero, stop

and complete the final columns with 0s.

A method of converting a denary number to binary

Worked example: Denary number 84

First set up the columns of base 2 numbers. Then look for the highest 2
n
number that goes

into 84.

1. Set up the columns of base 2 numbers

2. Find the highest 2
n
 number that goes into 84. The highest 2

n
 number is 26 = 64

3. 84 – 64 = 20. Find the highest 2
n
 number that goes into 20. The highest 2

n
 number is

24 = 16

4. 20 - 16 = 4. Find the highest 2
n
 number that goes into 4. The highest 2

n
 number is 22

= 4

5. 4 - 4 = 0

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/7#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/7#glossary-zpnqn39

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

6

6. Mark up the columns of base 2 numbers with a 1 where the number has been the

highest 2
n
number, or with a 0:

64 32 16 8 4 2 1

1 0 1 0 1 0 0

Result: 84 in denary is equivalent to 1010100 in binary.

To check that this is right, convert the binary back to denary:

(1 x 64) + (0 x 32) + (1 x 16) + (0 x 8) + (1 x 4) + (0 x 2) + (0 x 1) = 84

Bits and binary:
Computers use binary - the digits 0 and 1 - to store data. A binary digit, or bit, is the smallest

unit of data in computing. It is represented by a 0 or a 1. Binary numbers are made up of

binary digits (bits), e.g. the binary number 1001.

The circuits in a computer's processor are made up of billions of transistors. A transistor is a

tiny switch that is activated by the electronic signals it receives.

The digits 1 and 0 used in binary reflect the on and off states of a transistor.

Computer programs are sets of instructions. Each instruction is translated into machine code -

simple binary codes that activate the CPU. Programmers write computer code and this is

converted by a translator into binary instructions that the processor can execute.

All software, music, documents, and any other information that is processed by a computer, is

also stored using binary.

Encoding: Everything on a computer is represented as streams of binary numbers. Audio,

images and characters all look like binary numbers in machine code. These numbers are

encoded in different data formats to give them meaning, e.g. the 8-bit pattern 01000001 could be

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zsf2fg8
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zxn7sbk
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-z38n4wx
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-z7mkxnb
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-z6s2fg8
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-z2pqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zpj92hv

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

7

the number 65, the character 'A', or a color in an image.
Encoding formats have been standardized to help compatibility across different platforms. For

example:

 audio is encoded as audio file formats, e.g. mp3, WAV, AAC

 video is encoded as video file formats, e.g. MPEG4, H264

 text is encoded in character sets, e.g. ASCII, Unicode

 images are encoded as file formats, e.g. BMP, JPEG, PNG

The more bits used in a pattern, the more combinations of values become available. This larger

number of combinations can be used to represent many more things, eg a greater number of

different symbols, or more colors in a picture.

Bits and bytes

Bits can be grouped together to make them easier to work with. A group of 8 bits is

called a byte.

Other groupings include:

 Nibble - 4 bits (half a byte)

 Byte - 8 bits

 Kilobyte (KB) - 1024 bytes (or 1024 x 8 bits) = 2
10

 Megabyte (MB) - 1024 kilobytes (or 1048576 bytes) = 2
20

 Gigabyte (GB) - 1024 megabytes = 2
30

 Terabyte (TB) - 1024 gigabytes = 2
40

 Petabyte (PB) -1024 Terabytes = 2
50

 Exabyte (EB) -1024 Petabytes = 2
60

 Zettabyte (ZB)- 1024 Exabytes = 2
70

 Yottabyte (YB) 1024 Zettabytes = 2
80

The IEC convention for computer internal memories (including RAM) becomes:

 1 kilobyte = 1000 byte

 1 megabyte = 1000000 bytes

 1 gigabyte = 1000000000 bytes

 1 terabyte = 1000000000000 bytes and so on.

VS

 1 kibibyte (1 KiB) = 1024 bytes

 1 mebibyte (1 MiB) = 1048576 bytes

 1 gibibyte (1 GiB) = 1073741824 bytes

 1 tebibyte (1 TiB) = 1099511627776 bytes and so on.

However, the IEC terms are not universally used and we still use the more conventional

terms shown in Table 1.1This also ties up with the Cambridge International

Examinations computer science syllabus which uses the same terminology as in example

above.

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/2#glossary-zsf2fg8

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

8

Binary Addition

Adding binary numbers

Adding binary numbers is similar to adding denary numbers.

Example: Adding the binary numbers 11 and 100

Write the numbers out using the column method. Start from the right, and simply add the

numbers.

111 is 7 if converted back to denary.

Example: Adding two 1s in the same column

Sometimes a binary addition will require you to carry over values into the next highest place-

value column, eg when finding the sum of the binary numbers 0010 and 0111:

There is a clash when adding two ones in the same column. In binary, 1+1 is 10 - it has to

become 0 with 1 carried over.

1001 is 9 if converted back to denary. 2 + 7 = 9 in denary.

Overflow

A CPU with a capacity of 8 bits has a capacity of up to 11111111 in binary. If one more bit

was added there would be an overflowerror.

Sorry, this clip is not available in your region or territory.

An explanation of binary overflow errors
Download Transcript

Example: 8-bit overflow

An example of an 8-bit overflow occurs in the binary sum 11111111 + 1 (denary: 255 + 1).

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/2#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/2#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-z7mkxnb
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zsf2fg8
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zmhjpv4
https://bam.files.bbci.co.uk/bam/live/content/zc9sfg8/transcript

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

9

The total is a number bigger than 8 digits, and when this happens the CPU drops the overflow

digit because the computer cannot store it anywhere, and the computer thinks 255 + 1 = 0.

Overflow errors happen when the largest number that a register can hold is exceeded. The

number of bits that it can handle is called the word size.

Most CPUs use a much bigger word size than 8 bits. Many PCs have a 64-bit CPU. A 64-bit

CPU can handle numbers larger than 18 quintillion (18,446,744,073,709,551,615 to be precise).

Negative numbers: Sign and magnitude

Computers sometimes need to work with negative numbers.

Integers can be encoded so that they can be positive or negative numbers. Integers that can be

either positive or negative are signednumbers.

One way to represent negative numbers is through sign and magnitude. In this method,

the bit at the far left of the bit pattern - the sign bit - indicates whether the number is positive or

negative. The rest of the bits in the pattern store the size of the number (called its magnitude).

For example, with an 8-bit pattern, the first bit would be used to indicate positive or

negative.0 can indicate a positive number and a 1 can indicate a negative number. The other

seven bits would be used to store the actual size of the number.

For example, 10001001 could represent -9:

 the first bit, 1, indicates a negative number

 the other seven bits indicate the number, 0001001 = 9

The smallest possible number using this method of representation is -127 (or 11111111) and the

largest possible number is +127 (or 01111111).

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zr83d2p
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-z4jrq6f
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zswgjxs
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/4#glossary-zxhjpv4
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/4#glossary-z2xr7ty
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/4#glossary-zsf2fg8

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

10

Negative numbers: Two's complement

Another method of representing signed numbers is two's complement. Most computers use this

method to represent negative numbers. This method can be more effective when performing

mathematical operations like adding and subtracting.

 With two's complement, the bit at the far left of the bit pattern - the most significant

bit or MSB - is used to indicate positive or negative and the remaining bits are used to

store the actual size of the number. Positive numbers always start with a 0.

 Four-bit, positive, two's complement numbers would be 0000 = 0, 0001 = 1, up to 0111 =

7. The smallest positive number is the smallest binaryvalue.

 Negative numbers always start with a 1. The smallest negative number is the largest

binary value. 1111 is -1, 1110 is -2, 1101 is -3, etc down to 1000 which represents -8.

Using two's complement for negative numbers

1. Find the positive binary value for the negative number you want to represent.

2. Add a 0 to the front of the number, to indicate that it is positive.

3. Invert or find the complement of each bit in the number.

4. Add 1 to this number.

Examples
Find -1 using two's complement numbers

1. 1 = 001

2. Adding 0 to the front becomes 0001

3. 'Inverted' becomes 1110 (one’s compliment)

4. Add 1 = 1111 (-8 + 4 + 2 + 1 = -1)

Find -4 using two's complement numbers
1. 4 = 100

2. Adding 0 to the front becomes 0100

3. 'Inverted' becomes 1011

4. Add 1 = 1100 (-8 + 4 = -4)

This table shows the two's complement set for 4-bit numbers.

Denary 4-bit binary

-8 1000

-7 1001

-6 1010

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/5#glossary-z2xr7ty
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/5#glossary-zsf2fg8
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/5#glossary-zpnqn39

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

11

Denary 4-bit binary

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Conversion of –Ve Denary number to Binary:

What is – 65 10 in binary?

Two’s complement allows us to represent signed negative values in binary,
so here is an introductory demonstration on how to convert a negative

decimal value to its negative equivalent in binary using two’s complement.

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

12

Step 1: Convert 65d to binary. Ignore the sign for now. Use the absolute

value. The absolute value of -65 is 65.

65 = 01000001 in binary

Step 2: Convert 01000001 to its one’s complement.

01000001 = 10111110

Step 3: Convert 10111110 Binary to its two’s complement by

adding 1 to the one’s complement.

10111110
+ 1

10111111 = Two's complement

10111111b is -65 in binary. We know this it true because if we add
01000001 (+65) to 10111111b (-65) and ignore the carry bit, the sum is 0,
which is what we obtain if we add +65 + (-65) = 0.

01000001 +65
+ 10111111 -65

1 00000000 0 denary
^

Ignore the carry bit for now. What matters is that original number of bits (D7-D0) are all 0.

Two's complement sums

Using two's complement, the CPU can perform arithmetic using binaryaddition. For example:

-7 + 7 in two's complement binary would be calculated as:

In two's complement, if the final result overflows the remaining carry number is simply

discarded. For example:

-3 + 4 in two's complement binary would be calculated as:

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6#glossary-z7mkxnb
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6#glossary-zmhjpv4

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

13

Binary Subtraction

To carry out subtraction in binary, we convert the number being subtracted to its negative

equivalent using two’s compliment and then add the two numbers.

Hexadecimal Number System:

We often have to deal with large positive binary numbers. For instance, consider
that computers connect to the Internet using a Network Interface Card (NIC).
Every NIC in the world is assigned a unique 48-bit identifier as an Ethernet
address. The intent is that no two NICs in the world will have the same address.
A sample Ethernet address might be:
000000000100011101011110011111111001001000110110

 Fortunately, large binary numbers can be made much more compact—
and hence easier to work with—if represented in base-16, the so-called
hexadecimal number system.

 You may wonder: Binary numbers would also be more compact if
represented in base-10—why not just convert them to decimal?

 The answer, as you will soon see, is that converting between binary and
hexadecimal is exceedingly easy—much easier than converting between
binary and decimal.

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

14

The Hexadecimal Number System

The base 16 hexadecimal has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F). Note that
the single hexadecimal symbol A is equivalent to the decimal number 10, the single

Just as with decimal notation or binary notation, we again write a number as a string
of symbols, but now each symbol is one of the 16 possible hexadecimal digits (0
through F). To interpret a hexadecimal number, we multiply each digit by the power of
16 associated with that digit’s position.

For example, consider the hexadecimal number 1A9B. Indicating the values
associated with the positions of the symbols, this number is illustrated as:

Hexadecimal Place value:

 The one main disadvantage of binary numbers is that the binary string

equivalent of a large decimal base -10 number, can be quite long.

 When working with large digital systems, such as computers, it is common

to find binary numbers consisting of 8, 16 and even 32 digits which makes it

difficult to both read and write without producing errors especially when

working with lots of 16 or 32-bit binary numbers.

 One common way of overcoming this problem is to arrange the binary

numbers into groups or sets of four bits (4-bits).

 hese groups of 4-bits use another type of numbering system also commonly

used in computer and digital systems called Hexadecimal Numbers.

REPRESENTING INTERGERS AS HEXADECIMAL NUMBERS:

The base 16 notational system for representing real numbers. The digits used to

represent numbers using hexadecimal notation are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, and F.

―H denotes hex prefix.

Examples:

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

15

(i) 2 816 = 2 8H = 2 × 16
1
 + 8 × 16

0
 = 40

= 32 + 8 = 40

(ii) 2 F16 = 2 FH = 2 × 16 +15 × 1= 47

(iii) BC1216 = BC12H = 11×16
3
 +12×16

2
 +1×16

1
 +2×16

0
 = 48146

Hexadecimal Numbers in Computing

There are two ways in which hex makes life easier.

 The first is that it can be used to write down very large integers in a compact form.

 For example, (A D 4 5)16 is shorter than its decimal equivalent

(44357)10 and as values increase the difference in length

becomes even more pronounced.

Converting Binary Numbers to Hexadecimal Numbers.

Let’s assume we have a binary number of: 01010111

The binary number is 01010111

We will break number into 4 bits each as

0101 0111

Then we will start with the right side 4 bits

Starting from extreme right number

for 0101 for 0111

0X2
3
+1X2

2
+0X2

1
+1X2

0
0X2

3
+1X2

2
+1X2

1
+1X2

0

0X8+1X4+0X2+1X1 0X8+1X4+1X2+1X1

0+4+0+1=5 0+4+2+1=7

5 7

So Hexadecimal number is 57

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

16

Converting Hexadecimal Numbers to Binary Numbers

To convert a hexadecimal number to a binary number, we reverse the above
procedure. We separate every digit of hexadecimal number and find its
equivalent binary number and then we write it together.

Example 1.2.4

To convert the hexadecimal number 9F216 to binary, each hex digit is
converted into binary form.

9 F 2 16 = (1001 1111 0010)2

9 =1001 F=1111 2=0010

So Binary equivalent of Hexadecimal number is: 9F2= 100111110010

Problems 1.2.6

Convert hexadecimal 2BF9 to its binary equivalent.

Convert binary 110011100001 to its hexadecimal equivalent. (Below is working
area)

Converting a Hexadecimal Number to a (Denary) Decimal Number

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a
sum of powers of 16. For example, considering the hexadecimal number 1A9B above, we
convert this to decimal as:

 1 A 9 B

16
3
 16

2
16

1
 16

0

 1A9B = 1(16
3
) + A (16

2
) + 9(16

1
) + B (16

0
)

 = 4096 + 10(256) + 9(16) + 11(1) = 6811

So 1A9B16 = 681110

Converting a (Denary) Decimal Number into Hexadecimal Number

The easiest way to convert from decimal to hexadecimal is to use the same
division algorithm that you used to convert from decimal to binary, but repeatedly
dividing by 16 instead of by 2. As before, we keep track of the remainders, and the
sequence of remainders forms the hexadecimal representation.

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

17

For example, to convert the decimal number 746 to hexadecimal, we proceed as follows:

` Remainder

16 | 746

| 46

10 = A

| 2 14 = E

| 0 2

We read the number as last is first and first is last.

2EA

So, the decimal number 746 = 2EA in hexadecimal

BCD Binary Coded Decimals:

In computing and electronic systems, binary-coded decimal (BCD) is a class
of binary encodings of decimal numbers where each decimal digit is
represented by a fixed number of bits, usually four or eight. Special bit
patterns are sometimes used for a sign or for other indications (e.g., error or
overflow).

BCD was used in many early decimal computers, and is implemented in the
instruction set of machines such as the IBM System/360 series and its
descendants

http://www.majidtahir.com/
https://en.wikipedia.org/wiki/Decimal_computer
https://en.wikipedia.org/wiki/IBM_System/360

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

18

and Digital's VAX. Although BCD per se is not as widely used as in the past

and is no longer implemented in computers' instruction sets
[dubious

–

discuss]
, decimal fixed-point and floating-point formats are still important and

continue to be used in financial, commercial, and industrial computing

As most computers deal with data in 8-bit bytes, it is possible to use one of the
following methods to encode a BCD number:

Unpacked: each numeral is encoded into one byte, with four bits

representing the numeral and the remaining bits having no significance.

Packed: two numerals are encoded into a single byte, with one numeral in the least
significant nibble (bits 0 through 3) and the other numeral in the most significant nibble

The Denary number 8 5 0 3 could be represented by one BCD digit per
byte

00001000 00000101 00000000 000000011(Unpacked)Denary

Number 8 5 0 3 represented by One BCD per nibble

 1000 0101 0000 0011 (Packed)

e.g. 398602 in BCD

Answer: 3 = 0011 9 = 1001 8 = 1000 6 = 0110 0 = 0000 2 = 0010 So
398602 = 001110011000011000000010 (in BCD)

Note: All the zeros are essential otherwise you can’t read it back.

http://www.majidtahir.com/
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Wikipedia:Disputed_statement
https://en.wikipedia.org/wiki/Talk:Binary-coded_decimal#Dubious
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Nibble

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

19

But do not get confused, binary coded decimal is not the same as
hexadecimal. Whereas a 4-bit hexadecimal number is valid up to F16

representing binary 11112, (decimal 15), binary coded decimal numbers

stop at 9 binary 10012

Uses of BCD:

There are a number of applications where BCD can be used.

 The obvious type of application is where denary digits are to be displayed,

for instance on the screen of a calculator or in a digital time display.

 A somewhat unexpected application is for the representation of currency values. When a
currency value is written in a format such as $300.25 it is as a fixed-point decimal
number (ignoring the dollar sign). It might be expected that such values would be stored
as real numbers but this cannot be done accurately.

ASCII code:

If text is to be stored in a computer it is necessary to have a coding scheme that

provides a unique binary code for each distinct individual component item of the

text.

Such a code is referred to as a character code.

 The scheme which has been used for the longest time is the ASCII (American

Standard Code for Information Interchange) coding scheme.

 This is an internationally agreed standard. There are some variations on

ASCII coding schemes but the major one is the 7-bit code. It is customary to

present the codes in a table for which a number of different designs have

been used.

 The full table shows the 27 (128) different codes available for a 7-bit code.

You should not try to remember any of the individual codes but there are

certain aspects of the coding scheme which you need to understand.

 Computers store text documents, both on disk and in memory, using ASCII
codes. For example, if you use Notepad in Windows OS to create a text file
containing the words, "Four score and seven years ago," Notepad would use
1 byte of memory per character (including 1 byte for each space character

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

20

between the words

 It is worth emphasizing here that these codes for numbers are exclusively for
use in the context of stored, displayed or printed text.

 All of the other coding schemes for numbers are for internal use in a
computer system and would not be used in a text.

 There are some special features that make the coding scheme easy to use
in certain circumstances.

o The first is that the codes for numbers and for letters are in sequence
in each case so that, for example,

o if 1 is added to the code for seven the code for eight is produced.
o The second is that the codes for the upper-case letters differ from the

codes for the corresponding lower-case letters only in the value of bit
6.

o This makes conversion of upper case to lower case, or the reverse, a
simple operation.

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

21

Unicode
Despite still being widely used, the ASCII codes are far from adequate
for many purposes.

Unicode is an international encoding standard for use with different
languages and scripts.

It works by providing a unique number for every character, this creates a
consistent encoding, representation, and handling of text.

Basically Unicode is like a Universal Alphabet that covers the majority
of different languages across the world, it transforms characters into
numbers.

It achieves this by using character encoding, which is to assign a
number to every character that can be used.

What’s an example of a Unicode?

Unicode has its own special terminology. For example, a character code is
referred to as a 'code point'.

In any documentation there is a special way of identifying a code point. An
example is U+0041 which is the code point corresponding to the alphabetic
character A.

The 0041 are hexadecimal characters representing two bytes. The
interesting point is that in a text where the coding has been identified as
Unicode it is only necessary to use a one-byte representation for the 128
codes corresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have
restrictions applied.

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

22

At its core, Unicode is like ASCII: a list of characters that people want to type
into a computer. Every character gets a numeric codepoint, whether it’s
capital A, lowercase or lambda.

A = 65

λ = 923

So Unicode says things like, ―Allright, this character exists, we assigned it an
official name and a codepoint, here are its lowercase or uppercase equivalents
(if any), and here’s a picture of what it could look like. Font designers, it’s up to
you to draw this in your font if you want to.

Just like ASCII, Unicode strings (imagine ―codepoint 121, codepoint 111…‖)
have to be encoded to ones and zeros before you can store or transmit them.

But unlike ASCII, Unicode has more than a million possible codepoints, so

they can’t possibly all fit in one byte. And unlike ASCII, there’s no One True

http://www.majidtahir.com/

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

23

Way to encode it.

What can we do? One idea would be to always use, say, 3 bytes per

character. That would be nice for string traversal, because the 3rd codepoint

in a string would always start at the 9th byte. But it would be inefficient when

it comes to storage space and bandwidth.Instead, the most common solution

is an encoding called UTF-8.

UTF-8 :

UTF-8 gives you four templates to choose from: a one-byte template, a

two-byte template, a three-byte template, and a four-byte template.

0xxxxxxx

110xxxxx 10xxxxxx

1110xxxx 10xxxxxx 10xxxxxx

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Each of those templates has some headers which are always the same
(shown here in red) and some slots where your code point data can go
(shown here as black).

The four-byte template gives us 21 bits for our data, which would let us
represent 2,097,151 different values. There are only about 128,000
codepoints right now, so UTF-8 can easily encode any Unicode codepoint
for the foreseeable future.Unicode to represent any possible text in code
form.

Unicode is a computing industry standard for the consistent
encoding, representation, and handling of text expressed in most of
the world's writing systems.

Developed in conjunction with the Universal Coded Character Set (UCS)
standard and published as The Unicode Standard, the latest version of
Unicode contains a repertoire of more than 128,000 characters covering
135 modern and historic scripts, as well as multiple symbol sets..

As of June 2016, the most recent version is Unicode 9.0. The standard is
maintained by the Unicode Consortium.

Unicode's success at unifying character sets has led to its widespread and
predominant use in the internationalization and localization of computer
software. The standard has been implemented in many recent technologies,
including modern operating systems, XML, Java (and other programming
languages), and the .NET Framework

http://www.majidtahir.com/
https://en.wikipedia.org/wiki/Unicode_Consortium

Sec 1.1.1 Binary Number System Computer Science 9618

with Majid Tahir

24

References:

http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html

https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation

http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/

http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
Reference: http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6

http://www.majidtahir.com/
http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html
https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation
http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/
http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6

